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(a) Spatial distribution of SSL4EO-S12 [89] (b) Spatial distribution of SSL4Eco

(c) Copernicus land cover [55] distribution for SSL4Eco (upwards) and SSL4EO-S12 [89] (downwards)

Figure 1. We propose SSL4Eco, a multi-date Sentinel-2 dataset for pretraining foundation models targeted for macroecological applica-
tions. Unlike comparable datasets (a), SSL4Eco uniformly covers the entire landmass (b), thus capturing all environment types without
favoring urban and agricultural areas, or ignoring entire ecoregions (c).

Abstract
With the exacerbation of the biodiversity and climate

crises, macroecological pursuits such as global biodiver-
sity mapping become more urgent. Remote sensing offers
a wealth of Earth observation data for ecological studies,
but the scarcity of labeled datasets remains a major chal-
lenge. Recently, self-supervised learning has enabled learn-
ing representations from unlabeled data, triggering the de-

velopment of pretrained geospatial models with generaliz-
able features. However, these models are often trained on
datasets biased toward areas of high human activity, leav-
ing entire ecological regions underrepresented. Addition-
ally, while some datasets attempt to address seasonality
through multi-date imagery, they typically follow calendar
seasons rather than local phenological cycles. To better
capture vegetation seasonality at a global scale, we pro-



pose a simple phenology-informed sampling strategy and
introduce corresponding SSL4Eco, a multi-date Sentinel-2
dataset, on which we train an existing model with a season-
contrastive objective. We compare representations learned
from SSL4Eco against other datasets on diverse ecologi-
cal downstream tasks and demonstrate that our straight-
forward sampling method consistently improves represen-
tation quality, highlighting the importance of dataset con-
struction. The model pretrained on SSL4Eco reaches state
of the art performance on 7 out of 8 downstream tasks span-
ning (multi-label) classification and regression. We release
our code, data, and model weights to support macroecolog-
ical and computer vision research at
https://github.com/PlekhanovaElena/ssl4eco.

1. Introduction
Biodiversity is essential for ecosystem stability and human
well-being, yet it faces an unprecedented crisis due to habi-
tat loss and climate change [8]. Recognized as a global
priority (SDG 15) [63], biodiversity loss ranks among the
most severe risks of the next decade [28]. This intensify-
ing crisis calls for macroecological studies to understand
spatiotemporal biodiversity patterns and identify priority ar-
eas for conservation [8]. Mapping changes in biodiversity,
habitats, and land-use (e.g. deforestation, urban or agricul-
tural expansion) over time is essential for conservation plan-
ning [36, 37]. Central to these efforts is monitoring vege-
tation change, as vegetation forms the primary structure of
most terrestrial ecosystems and shapes biodiversity patterns
and ecosystem functions [85].

Remote sensing is a powerful tool for monitoring vege-
tation change at broad spatial and temporal scales [92]. It
provides consistent, repeated, global observations, enabling
the detection of subtle shifts in vegetation health, species
composition, and phenology—insights often unattainable
through ground-based methods [25, 27]. Several open-
access satellite products support vegetation monitoring,
each with distinct strengths and limitations (see Appendix
A-1). This work focuses on Sentinel-2 due to its widespread
use for large-scale vegetation monitoring [46, 52, 80], but
our conclusions remain applicable and may be extended to
other satellite products.

To extract ecological insights from remote sensing data,
initial approaches relied on handcrafted features and clas-
sical machine learning [6, 34]. Deep learning has since
revolutionized the field by automating feature extraction
for tasks with annotated datasets [56, 97]. Recently, self-
supervised learning (SSL) has gained traction for learn-
ing rich representations from large, unlabeled datasets [35],
with successful applications in the analysis of natural
language [19], natural images [66], and remote sensing
data [4]. The resulting pretrained models produce represen-
tations that generalize to downstream tasks, making these

so-called foundation models (FMs) particularly suitable for
applications where labeled data is scarce or costly, such as
large-scale ecological studies [88].

The size and diversity of the pretraining dataset largely
influences the generalizability of the learned representa-
tions [72, 96]. While research on geospatial FMs operating
on georeferenced data (GFMs) is an active field of study,
most effort is currently geared towards new model archi-
tectures and SSL pretraining tasks, and little attention is
given to the design of pretraining datasets. This oversight
is critical, as the geographical distribution of training data
significantly influences model performance [71, 74]. For
biodiversity applications in particular, existing GFMs are
often trained on datasets which fail to capture important
spatiotemporal ecological patterns, as summarized in Ta-
ble 1. First, the geographic sampling is often biased towards
human activity, hence over-representing urban and agricul-
tural areas while neglecting entire biomes. Second, multi-
temporal datasets are typically sampled following calendar
seasons, failing to account for local phenological cycles, es-
sential to biodiversity monitoring.

In this work, we propose a dataset construction recipe
targeted towards the development of foundation models for
ecology. Specifically, we propose to sample locations uni-
formly across the landmass, rather than around large ur-
ban areas [58, 89], and sample dates based on local pheno-
logical cycles, rather than calendar seasons [58, 89]. Fol-
lowing this protocol, we introduce SSL4Eco, a pretrain-
ing dataset of multispectral, multi-date Sentinel-2 patches
of 256 × 256 pixels, uniformly sampled across 250k loca-
tions around the globe and capturing local phenology, as
shown in Figure 1 and Figure 2. From SSL4Eco, we derive
SeCo-Eco, a seasonality-aware SeCo [58] model, and com-
pare its embeddings against off-the-shelf GFMs on diverse
macroecological tasks. We show that SeCo-Eco equals or
exceeds the performance of all other baselines on 7 out of 8
downstream tasks spanning (multi-label) classification and
regression, with larger gaps of +2 mAP on BigEarthNet-
10% [82] and +3 to +4 R2 in regression of climatic vari-
ables and biomass.

Far from claiming a new SSL training or backbone, this
work stresses the importance of dataset design, and how a
straightforward spatiotemporal sampling protocol may con-
sistently benefit GFMs downstream applications. We pub-
licly release our datasets, code, and weights at https://
github.com/PlekhanovaElena/ssl4eco, hoping
to foster both downstream macroecological studies and
methodological computer vision research with a concern for
environmental applications. The contributions of this work
are as follows:

• SSL4Eco: a novel multi-temporal Sentinel-2 pre-training
dataset with uniform global distribution and vegetation
phenology-based seasonal sampling.

https://github.com/PlekhanovaElena/ssl4eco
https://github.com/PlekhanovaElena/ssl4eco
https://github.com/PlekhanovaElena/ssl4eco


Dataset
Locations

Seasons
Number Distribution

BigEarthNet [82] 600k Europe -
SEN12MS [77] 280k Around cities Calendar
SeCo [58] 200k Around cities Random
S2-100k [49] 100k Global uniform -
Planted [68] 3.0M Semi global -
SatlasPretrain [5] 3.0M Semi global -
SSL4EO-S12 [89] 250k Around cities Calendar
MajorTOM-Core [29] 2.2M Global uniform -

SSL4Eco 250k Global grid EVI-based

Table 1. Comparison of the spatiotemporal sampling of popular
pretraining datasets for geospatial foundation models. Our sam-
pling of SSL4Eco is designed to fully capture both global geo-
graphic diversity and local climatic and phenological seasonality.

• SeCo-Eco: a seasonality-aware geospatial foundation
model pretrained on SSL4Eco.

• New macroecological downstream tasks for benchmark-
ing geospatial foundation models.

2. Related Work
In this section, we provide an overview of existing remote
sensing datasets used for pretraining geospatial foundation
models, with a focus on their spatiotemporal distribution.
We then introduce several such foundation models relevant
to this work.

Pretraining Remote Sensing Datasets. Numerous la-
beled datasets have been proposed to employ remote
sensing imagery for mapping urban or agricultural land-
scapes [32, 33, 78]. However, these generally do not offer
the spatial and seasonal coverage necessary to macroeco-
logical research, as summarized in Table 1. Existing un-
labeled pretraining datasets for SSL models focus predom-
inantly on regions experiencing high human impact, often
neglecting areas crucial for ecological research and con-
servation. For instance, SEN12MS [77], SeCo [58], and
SSL4EO-S12 [89] datasets are sampled around large cities,
mainly encompassing urban and agricultural zones (Fig-
ure 1). While BigEarthNet [82] does sample diverse vegeta-
tion types, it only covers Europe. Other datasets such as Sat-
lasPretrain [5], S2-100K [49], and Planted [68] have better
geographic coverage, but with significant gaps in the trop-
ics due to high cloud coverage and either undersample or
ignore Arctic tundra entirely. Yet, tropical rainforests har-
bor the highest levels of biodiversity on the globe [8], mak-
ing their underrepresentation in training datasets problem-
atic. Similarly, the Arctic region is central to many environ-
mental processes such as the thawing of Arctic permafrost
which introduces one of the greatest uncertainties in current
climate models [79]. Interestingly, Major-TOM-Core [29]

Model Dataset Backbone Pretraining

SeCo [58] [58] SeCo [58] ResNet50 [38] SeCo [58]
SatMAE [16] fMoW [13, 16] ViT-L [20] MAE [40]
Satlas [5] SatlasPretrain [5] Swin-B [53] Supervised
Croma [31] SSL4EO-S12 [89] ViT-L [20] MAE [40]
SSL4EO [89] SSL4EO-S12 [89] ResNet50 [38] MoCov2 [11]
DOFA [93] DOFA [93] ViT-L [20] MAE [40]
SeCo-Eco SSL4Eco ResNet50 [38] SeCo [58]

Table 2. Overview of recent image-based geospatial foundation
models. We focus on models trained to process Sentinel-2 data, for
fair comparison with our pretraining setting. While we release a
new pretrained image-based model SeCo-Eco, our focus is not on
the design of a backbone or pretraining method, but on the impact
of the pretraining dataset.

uniformly covers the entire landmass, but at a single date,
failing to capture seasonality. Despite the importance of
seasonality for ecosystems and ecological research [43],
few datasets provide multi-temporal imagery at each loca-
tion. SeCo [58] randomly selects 5 dates across the year
separated by approximately 3 months. SEN12MS [77] and
SL4EO-S12 [89] select 4 dates within seasonal windows
defined based on calendar dates. However, these sampling
approaches treat all locations equally, resulting in datasets
that overlook the reality of local climatic and ecological
conditions. Indeed, regions near the tropics may have
longer leaf-on seasons, while desert or Arctic regions may
see very brief events of vegetation activity with a large por-
tion of the year being dry or snow-covered. Likewise, the
beginning and end of dormancy periods may be shifted in
the year, depending on local climatic conditions. In this
work, we propose a simple sampling strategy that fully cov-
ers the global diversity of landscapes (Figure 1) and local
seasonality (Figure 2). Our goal is to design datasets for
learning representation better suited for downstream eco-
logical applications.
Geospatial Foundation Models. Advances in self-
supervised learning have recently allowed to learn general-
izable representations from the wealth of public, unlabeled,
satellite imagery [4, 88]. Masked image modeling [40]
methods typically leverage symmetries inherent to remote
sensing data to reconstruct masked spectral bands [16], time
steps [23], both [42], or other modalities [3, 31, 64, 84].
Alternatively, contrastive approaches [10, 11, 39] learn to
align latent representations of imagery from different sea-
sons [58, 89] or modalities [2]. Another direction learns
implicit geolocation representations by aligning spatial co-
ordinates with terrestrial [87] or satellite [49] imagery, or
species occurrences [15]. Moving beyond the focus on the
design of self-supervised method or model architecture, our
work sheds light on the importance of pretraining datasets.
We use existing SSL methods to pretrain on our SSL4Eco
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(a) EVI-based seasons (b) Seasonal images

Figure 2. Unlike previous works which sample seasonal images based on calendar dates [58, 77, 89] (dashed lines in (a)), we define
phenology-informed, local seasons based the Enhanced Vegetation Index [44, 45] (colored sections in (a)). As a result, our SSL4Eco
dataset covers the full cycle of vegetation activity at each location (b), capturing patterns otherwise missed by calendar sampling.

dataset and analyze resulting representations with available
comparable image-based geospatial foundation models, as
summarized in Table 2.

3. Method
We detail our proposed dataset construction approach in
Section 3.1 and pretrained model in Section 3.2.

3.1. SSL4Eco Dataset
Our dataset sampling recipe aims at capturing phenology-
informed patterns anywhere on Earth. For more details on
our dataset construction protocol, please see Section A-1.

Spatial Sampling. Similar to Major-TOM [29], we uni-
formly sample geolocations across the globe using a regular
grid, accounting for distortions long the latitude. We only
sample positions across the landmass, with a 23 km spacing
between points, yielding 250k geolocations. This sampling
size is chosen to allow comparison with similar pretrain-
ing datasets [58, 89]. As shown in Figure 1, the resulting
dataset follows the natural distribution of land use, without
focusing on urban or agricultural areas.

Seasonal Sampling. Vegetation seasonality primarily de-
pends on local temperature and light regimes, themselves
primarily driven by latitude [14, 67], altitude [48, 50],

and rainfall seasonality [12, 22] (e.g. monsoon regions, or
Mediterranean and Savannah biomes). To capture local sea-
sonality, we sample 4 dates at each location. Unlike pre-
vious works which define seasons globally based on cal-
endar dates [58, 77, 89], we sample based on local plant
phenology. To this end, we use the Enhanced Vegetation
Index (EVI) from the MCD12Q2 v6.1 [30] product of the
MODIS [45] satellite mission. For each location, we define
the 4 seasons spring, summer, autumn, and winter as inter-
vals between the Greenup, Maturity, Senescence, and Dor-
mancy variables (see Sec. A-3 for details). By sampling a
date in each of these phenological seasons, we aim to better
seize the diversity of vegetation states at each location than
calendar or random sampling, as illustrated in Figure 2.

Modality. We apply our spatiotemporal sampling strategy
to create SSL4Eco, a global, multi-temporal dataset of satel-
lite imagery. We choose to use Sentinel-2 [70] images for
their superior spatiotemporal resolution and widespread use
in vegetation monitoring [46, 52, 70, 80]. In addition to the
12 spectral bands of Sentinel-2, SSL4Eco carries an NDVI
band, which is widely used as a proxy of vegetation produc-
tivity and biomass [69]. While the present work focuses on
demonstrating the impact of dataset sampling on Sentinel-
2, our dataset construction and sampling analysis could nat-
urally be extended to other modalities relevant to ecology



Figure 3. Linear Probing performance across all datasets. We
compare SeCo-Eco against the respective best-performing model
among our reported set of baselines.

such as optical [45, 91], SAR [75, 83], LiDAR [21] sensors,
or species [24], and climate [41, 47] observations, which we
leave for future work.

Patching. Similar to previous works [58, 89] we choose a
patch size is 256× 256 pixels (2.56× 2.56 km). The exact
amount of retrieved locations is 254 403, each having up to
4 dates, yielding a total of 1M patches, for a final dataset
size of 1.3 TB.

3.2. SeCo-Eco Model
In this section, we introduce our SeCo-Eco model, trained
with a seasonal contrastive objective on SSL4Eco. We
stress that our current focus is on pretraining dataset con-
struction, not novel SSL training or backbone.

Our self-supervised training objective needs to cap-
ture spatial and seasonal patterns in our multi-temporal
data. SSL4EO [89] proposes a seasonal contrastive objec-
tive, but encourages learning season-agnostic features. In-
stead, we use Seasonal Contrast (SeCo) [58], which learns
both season-agnostic and season-specific representations,
more appropriate for seasonality-sensitive tasks. We use
ResNet50 as our image encoding backbone, which has
proven to be robust across a variety of remote sensing
tasks [49, 58, 88, 89]. We dub SeCo-Eco our resulting
model trained on SSL4Eco. We also explore in Section 4
another version, MoCo-Eco, pretrained using the seasonal
contrastive objective from SSL4EO.

We pretrain for 100 epochs, with a batch size of 256 on a
single A100 GPU (7 days for SeCo-Eco, 4 days for MoCo-
Eco). See Section A-2 for more implementation details.

4. Experiments

We present in Section 4.1 the downstream tasks we use for
comparing geospatial foundation models, present experi-
mental results in Section 4.2, and ablations in Section 4.3.

4.1. Downstream Tasks and Evaluation
Several benchmarks for geospatial foundation models have
been proposed [26, 51, 59, 94], but none fit to our current
setting of Sentinel-2, image-level representations for eco-
logical applications. Hence, we leverage existing datasets
and propose new ones to evaluate the SSL4Eco pretraining.

Protocol. We compare embeddings from SeCo-Eco with
other geospatial foundation models operating on Sentinel-2
input data. Our choice of benchmarked methods is driven
by the availability of reproducible code at the time of writ-
ing. For each model, we use the official implementation and
adjust Sentinel-2 bands selection and normalization based
on their respective pretraining setting. Following Wang et
al. [89], we also crop or stretch the input patch size to align
with the pretraining conditions. We evaluate embeddings
both with linear probing (LP) and K-Nearest Neighbor (k-
NN) approaches. For LP, we freeze the model backbone and
train a single linear layer on top. We use the AdamW [54]
optimizer, train for up to a 1000 epochs with early stopping,
a learning rate of 1e−3, a batch size of 256, on an NVIDIA
T4 GPUs. For k-NN, we follow existing literature [9, 90]
and aggregate labels from the k-nearest neighbors in the
training set, based on cosine similarity. We use a softmax
temperature of 0.07 and grid-search k for each task. Unless
specified otherwise for the task, we always split our data in
10 test folds and randomly sample training and validation
sets from the remaining data with [0.9, 0.1] split. We re-

Model

Biomes
(macro F1)

↑ CAVM
(macro F1)

↑

LP 10-NN LP 20-NN

SeCo [58] 41.5± 0.5 36.9± 1.0 54.4± 0.7 52.1± 0.7

SatMAE [16] 51.3± 1.1 47.7± 0.7 56.3± 1.4 55.8± 0.7

Satlas [5] 48.3± 1.6 47.6± 0.9 53.8± 2.0 53.2± 0.5

Croma [31] 47.1± 1.4 42.2± 0.6 53.6± 1.2 51.6± 0.8

SSL4EO [89] 53.3± 1.0 49.7± 0.5 57.5± 0.6 56.9± 0.6

DOFA [93] 49.7± 1.3 42.9± 0.5 56.4± 1.6 53.5± 0.6

SeCo-Eco (ours) 56.1 ± 0.7 51.1 ± 0.9 59.4 ± 1.0 59.5 ± 0.8

Table 3. Linear probing and K-Nearest Neighbor comparison
of state of the art models with our SeCo-Eco pretrained on our
SSL4Eco on classification of two land cover datasets: global
biomes and Arctic vegetation types [73]. Best, second best.



Model

BE10%
(micro mAP)

↑ CLEF
(micro F1)

↑ EU-Forest
(micro F1)

↑ TSAI
(micro F1)

↑

LP 30-NN LP 1-NN LP 5-NN LP 5-NN

SeCo [58] 79.2± 0.0 77.8± 0.1 20.8 12.3 31.3± 0.7 30.6± 0.2 23.4± 0.0 35.2

SatMAE [16] 79.7± 0.2 79.6± 0.0 21.6 13.6 35.7 ± 1.0 33.3 ± 0.1 46.8 ± 0.3 43.7

Satlas [5] 77.9± 0.2 77.9± 0.0 18.9 11.8 30.0± 0.2 30.0± 0.2 42.9± 0.0 40.8

Croma [31] 80.7± 0.2 79.1± 0.0 20.8 12.0 32.2± 0.9 30.1± 0.2 43.8± 0.0 40.7

SSL4EO [89] 83.2± 0.1 81.1± 0.0 21.7 12.6 32.6± 0.1 31.5± 0.2 42.3± 0.0 40.9

DOFA [93] 80.1± 0.0 77.3± 0.1 20.3 12.1 34.8± 0.9 30.0± 0.3 35.1± 0.0 37.4

SeCo-Eco (ours) 85.3 ± 0.0 84.0 ± 0.0 22.3 13.0 35.7 ± 0.4 32.4± 0.2 42.7± 0.0 40.6

Table 4. Linear probing and K-Nearest Neighbor comparison of state of the art models with our SeCo-Eco pretrained on our SSL4Eco on
muti-label classification tasks. CLEF and TSAI have official train and test splits, the standard deviation is only reported when relevant.
Best, second best.

port the mean and standard deviation for each metric across
the 10 test folds. The reported metric is picked based on
common choices in the literature. See Section A-6 for eval-
uations on a larger range of metrics and per-class results if
applicable.

Classification Tasks.
Biomes. We adapt the biomes task of Klemmer et al. [49],
assembling a dataset of 52k randomly selected inland lo-
cations and label them from a set of 15 classes according
to Olson et al.’s biome map [65]. We adjust for latitude-
longitude bias in the location selection. For each datapoint
we download a 256 × 256 pixel (2.56 km) image from
the least-clouded Sentinel-2 Harmonized dataset tile [70].
We choose images within a one month range from 15th of
July/15th of January for the Northern/Southern hemisphere
accordingly. We train using the cross entropy loss and re-
port the macro F1 score.
Arctic Vegetation Types (CAVM). We create an Arctic veg-
etation types task, as the Arctic ecosystem tends to be criti-
cally undersampled (see Tab. 1). We assemble a dataset us-
ing 79k randomly selected locations in equal area projection
in the Arctic and label them according to the Arctic vegeta-
tion types CAVM dataset [73]. We use the broad map units
(B, G, P, S, and W) as labels, resulting in 5 vegetation cat-
egories. We choose images within a one month range from
15th of July. The downloaded satellite imagery, training,
and metrics follow the setup of the biomes task.

Multi-Label Classification Tasks.
BigEarthNet. BigEarthNet [82] dataset is a 19-class, multi-
label land cover classification dataset. It includes 590k
1.2 × 1.2 km Sentinel-2 patches collected in 2017-2018
across Europe. Although BigEarthNet is not specifically
targeted for ecology, it is widely used for benchmarking
GFMs, and we use it as a sanity check for the generaliza-

tion power of our embeddings. Following previous work,
we report results on a predefined test set and use only 10%
of the remaining images for training [58, 64, 89]. We adapt
the SSL4EO protocol [89] for data preparation, train using
a multi-label soft margin loss and measure performance by
micro mean average precision.

GeoLifeCLEF 2023. The GeoLifeCLEF 2023 [7] dataset
contains 5138 presence-absence surveys of 2174 plant
species across France and the United Kingdom. Each sur-
vey reports all plant species found in a small plot (between
10m2 and 400m2). For each location, we download a 1× 1
km Sentinel-2 patch (100 × 100 pixels). We train with the
binary cross-entropy loss, up weighting all presences by a
factor of 12 due to high imbalance between presences and
absences. We use the entire labeled dataset for training and
communicate results on the official held-out test set. We
submit the predictions on the 22k test surveys to the leader-
board and report the micro F1 score.

EU-Forest. We adapt the European 1 km-resolution tree
occurrence dataset EU-Forest [60] to a multi-label classifi-
cation task. We sample 51 802 locations from the original
data, covering 64 species with at least 200 occurrences, with
some locations containing multiple species. For each loca-
tion, we download a 1×1 km Sentinel-2 patch. We train us-
ing a multi-label soft margin loss and measure performance
by micro F1 score.

TreeSatAI. The TreeSatAI [1] is a multimodal dataset for
tree species identification with multi-label annotations for
15 tree genera classes taken in Lower Saxony, Germany.
The dataset comprises 50 381 tiles of 60 m width for several
remote sensing products. In our setting, we only use the
Sentinel-2 6 × 6 patches. Similar to EU-Forest, we train
with a multilabel soft margin loss and report the micro F1
score. We communicate performance on the official test,



and randomly select training and validation splits from the
remaining data.

Regression Tasks.
BioMassters. BioMassters [62] is a benchmark for above-
ground biomass estimation in Finland from Sentinel-1/2
time series. Initially designed for a dense pixel regression
task, we reformulate it here as an image-level distribution
prediction. To this end, we divide the total distribution of
biomass throughout the dataset into decile bins. Since the
first three bins account for zero biomass (i.e. ground pix-
els), we merge them. Then, for each 256 × 256 Sentinel-2
patch in the dataset, we compute the proportion of pixels
falling into each of our 8 bins. Our model is tasked to pre-
dict the exact distribution of biomass for each image. Since
the BioMassters dataset provides monthly images through-
out the year, we split the task into a "summer" (June, July
and August) and a "winter" (December, January and Febru-
ary) version, based on the season of the Sentinel-2 patches
used as input. We train using the Kullback-Leibler diver-
gence and report the average coefficient of determination
R2 across bins as our main metric.
CHELSA Climate Regression. Similar to SatClip [49] we
propose to regress these aggregated climatic variables from
pretrained geolocated embeddings. CHELSA [47] is a 1 km
resolution global downscaled climate dataset, from which
we extract the mean temperature (temp), total annual pre-
cipitation (prec), potential evaporation (evap) and site water
balance (swb) from the 1981-2010 climatology of CHELSA
v2.1 [47] for 50k locations across the landmass. For sim-
plicity, we use the same locations and Sentinel-2 images as
for the Biomes task. After Gaussian-normalizing the val-
ues, we train using a mean squared error loss and use R2 to
measure performance.

4.2. Results and Analysis
We compare the representation learned by SeCo-Eco on our
SSL4Eco across the above-defined tasks. Figure 3 summa-
rizes the performance of SeCo-Eco in comparison to the
strongest baseline on each task. Overall, we observe that
SeCo-Eco outperforms all other approaches on all but one
task, showing that a simple change in the sampling design of
the pretraining dataset can yield significant improvements.
Classification. Table 3 SeCo-Eco outperforms all other
methods on our classification tasks, both for linear prob-
ing and k-NN evaluation, followed by SSL4EO with +2.8
and +1.9 macro F1 LP performance gaps on the biomes
and CAVM tasks, respectively. The improvement of SeCo-
Eco over SSL4EO can be explained by their difference in
seasonal-contrastive training, as well as our dataset design
(see Section 4.3 and Section A-4 for more details). The low
performance of the RGB-based SeCo on biomes highlights
the importance of multispectral images for the biomes clas-
sification task. The superior performance of SeCo-Eco over

SSL4EO on CAVM illustrates the importance of including
arctic regions in the pretraining set for ecological applica-
tions.

Multi-Label Classification. We compare performance on
four multi-label classification tasks in Table 4, three of
which are specifically directed at predicting plant species
communities. SeCo-Eco outperforms all other baselines
in LP for BigEarthNet-10% (+2.1 mAP), GeoLifeCLEF
(+0.6 micro F1). Interestingly, the largest performance gain
from our approach is observed on the challenging BigEarth-
Net benchmark, which oversamples non-natural landscapes.
This indicates that despite its focus on capturing global
phenological seasonality, the spatiotemporal distribution of
SSL4Eco still allows learning anthropic patterns. On the
other hand, SeCo-Eco performs −4.1 micro F1 below Sat-
MAE on the TreeSatAI task, which we attribute to the small
6 × 6 patch size used for this task, which is far from the
224× 224 both SeCo-Eco and SeCo are pretrained on.

Model

BioMassters
(mean R2)

↑ CHELSA
(mean R2)

↑

LP 1-NN LP 10-NN

SeCo [58] 51.2± 0.0 −19.2 68.3± 0.7 67.4± 0.7

SatMAE [16] 59.4± 0.5 −18.0 76.3± 0.6 77.6± 0.7

Satlas [5] 62.4± 0.9 −17.8 68.3± 0.9 73.3± 0.7

Croma [31] 58.4± 0.2 −18.1 73.3± 0.9 71.2± 0.5

SSL4EO [89] 71.3± 0.1 −16.8 75.8± 0.6 77.7± 0.5

DOFA [93] 63.0± 0.4 −18.3 69.6± 0.6 70.7± 0.7

SeCo-Eco (ours) 75.3 ± 0.3 -16.3 81.1 ± 0.4 81.0 ± 0.5

Table 5. Linear probing and K-Nearest Neighbor comparison
of state of the art models with our SeCo-Eco pretrained on our
SSL4Eco on regression tasks. For the BioMassters task the stan-
dard deviation can only be reported for linear probing due to the
fixed train and test sets. Best, second best.

Regression. For the two regression tasks of BioMassters
and CHELSA, we report in Table 5 the mean R2 per-
formance, aggregated across the BioMassters bins and
CHELSA rasters. SeCo-Eco outperforms all other baselines
by a significant margin on both BioMassters (+4.0 R2 LP)
and CHELSA (+4.8 R2 LP). The large performance gap
with respect to SSL4EO suggests that our model benefits
from the more uniform spatial sampling of its pretraining
dataset. Indeed, the BioMassters dataset is located in Fin-
land, which is poorly covered by the SSL4EO pretraining
dataset (Fig. 1). Similarly, the CHELSA task requires uni-
form performance across the globe, which does not align
with the urban-focused SSL4EO pretraining. The nega-
tive R2 scores on BioMassters indicate that 1-NN yields
lower performance than a simple average prediction, sug-
gesting that that this NN evaluation is not adapted to this



Model BE10%
(micro mAP)

↑ CLEF
(micro F1)

↑ EU-Forest
(micro F1)

↑ TSAI
(micro F1)

↑ Biomes
(macro F1)

↑ CAVM
(macro F1)

↑ BioMassters
(mean R2)

↑ CHELSA
(mean R2)

↑

SSL4EO [89] 83.2± 0.1 21.7 32.6± 0.1 42.3 ±0.0 53.3± 1.1 57.5 ±0.6 71.4± 0.0 75.9± 0.6

MoCo 84.0 ±0.1 21.7 35.4 ±0.2 41.3± 0.0 58.4 ± 0.8 59.1± 0.7 73.4 ±0.1 81.5 ± 0.4

SeCo-Eco (ours) 85.3 ± 0.0 22.3 35.7 ± 0.4 42.7 ± 0.0 56.1 ±0.7 59.4 ± 1.0 75.2 ± 0.1 81.1 ±0.4

Table 6. Linear probing comparison of MoCo-Eco and SeCo-Eco pretrained on SSL4Eco. SeCo-Eco learns both season-invariant and
season-sensitive representations, which yield overall better performance than the season-invariant MoCo-Eco. Best, second best.

Model

BioMassters S
(mean R2)

↑ BioMassters W
(mean R2)

↑

LP 1-NN LP 1-NN

SeCo [58] 51.3± 0.0 −19.2 32.3± 0.1 −30.6

SatMAE [16] 59.5± 0.6 −18.0 50.0± 0.2 −26.3

Satlas [5] 62.5± 0.9 −17.8 51.7± 1.1 −26.1

Croma [31] 58.5± 0.2 −18.1 43.5± 0.3 −27.0

SSL4EO [89] 71.4 ±0.0 −16.8 63.2 ±0.1 −25.3

DOFA [93] 63.1± 0.4 −18.3 55.0± 0.4 −26.2

SeCo-Eco (ours) 75.2 ± 0.1 -16.3 67.7 ± 0.2 -24.9

Table 7. Comparison of models using Summer (S) or Winter (W)
images on BioMassters. Due to the fixed splits, the standard devi-
ation can only be reported for linear probing. Best, second best.

task, for which linear probing should be preferred. In com-
parison, the CHELSA task regresses climatic conditions,
which evolve more smoothly throughout the models feature
spaces, allowing to retrieve good estimates from neighbor-
ing embeddings.

4.3. Ablation Study.
Seasonal Pretraining. We compare in Table 6 the impact
of pretraining on SSL4Eco using the seasonal-contrastive
objectives from SeCo [58] and SSL4EO [89] (SeCo-Eco
and MoCo-Eco models, respectively). Our results show that
SeCo-Eco features overall tend to perform on par or better
than MoCo-Eco features with linear probing, showing the
benefit of learning not only season-agnostic features, but
also season-specific ones.

Winter Predictions. To test the influence of the acqui-
sition date on model performance in downstream task, we
compare the models on images taken from local winter
months against summer months of BioMassters dataset. As
shown in Table 7, all models drop in performance when us-
ing the snow-covered winter images of BioMassters. Still,
we observe that SeCo-Eco clearly outperforms other mod-

els on both seasons, followed by SSL4EO, owing to their re-
spective seasonal-contrastive pretraining. Interestingly, the
RGB-based SeCO model performs worst despite having the
same pretraining strategy as SeCo-Eco, suggesting multi-
spectral imagery as critical to such tasks. These results
demonstrate the robustness of our learned phenologically-
informed representation to seasonal changes.

Limitations and Future Works. To recover less clouded
images in each phenological season, we gather images
across 2017-2024, which may cause large temporal gaps be-
tween images of the same location, making our dataset in-
adequate for fine-grained temporal tasks. Although not the
focus of this work, pretraining more methods on SSL4Eco
besides SeCo-Eco and MoCo-Eco would provide deeper in-
sights into the respective merits of each. Extending our
dataset with additional modalities would likely allow learn-
ing richer features [2, 3, 64], which we make possible by
releasing all necessary metadata. Finally, our dataset and
model could naturally be used in a multi-modal contrastive
learning framework aligning Sentinel-2 seasonal represen-
tations with text [81, 95], environmental variables [17, 86],
or geolocation [49, 87].

5. Conclusion
In this study, we propose a simple approach for sampling
global seasonality-aware remote sensing datasets, from
which we derive SSL4Eco, a multi-temporal Sentinel-2
dataset for pretraining geospatial foundation models tar-
geted for macroecological applications. Compared to previ-
ous works, our dataset uniformly samples the landmass and
local phenological cycles. We demonstrate that our sim-
ple spatiotemporal dataset sampling consistently improves
the quality of self-supervised representations on a variety of
macroecological tasks, highlighting the importance of pre-
training set design, which could naturally be extended to
additional relevant modalities.
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Supplementary Material

A-1. SSL4Eco Dataset Construction

In this section, we provide more details on our dataset con-
struction protocol.

Spatial Sampling. We use the same approach as Major-
TOM [29] for sampling locations uniformly across the land-
mass. Our locations correspond to the center of the grid
cells.

Seasonal Sampling. As explained in Section 3.1 and Fig-
ure 2, we define 4 seasons as intervals between Greenup,
Maturity, Senescence, Dormancy, and next Greenup vari-
ables. The definition of these EVI variables can be found in
Section A-3. For each variable, we calculate the median day
in the available years. The EVI product from the MCD12Q2
v6.1 [30] product has missing values in non-vegetated and
some evergreen areas (e.g. tropics), for which we expect
low seasonal variation. We populate these with a nearest-
neighbor approach by searching across geographical space.

For each location and season, we preselect all Sentinel-2
tiles across the 6 years of data available 2017-2024. The
broad range of years was chosen to account for high cloud
coverage in some areas (e.g. tropics in wet seasons). Fol-
lowing previous work [89], we remove the tiles with less
than less than 20% cloud coverage. Finally, we choose the
date and tile with the lowest cloud coverage for the location-
season at hand. If fewer than four seasonal images are avail-
able for a location due to cloud filtering, we use the 2 or 3
images that are available with less than 20% cloud coverage.
Locations with only one image are excluded, accounting for
3% of initially sampled locations, mostly in the tropics and
Antarctica. Hence, final patches may be clouded, but the
construction process ensures that the overall dataset has less
than 20% cloud coverage.

We stress that the scope of this work is to study
impact of spatiotemporal sampling compared to existing
widely-used 4-date seasonal datasets such as SeCo [58] and
SSL4EO [89]. As such, we follow the standard prepro-
cessing procedure of these datasets regarding cloud filter-
ing and the number of seasonal dates per year fair compari-
son across the computer vision literature. However, realistic
Earth Observation applications would require methods ca-
pable of handling arbitrarily sampled, potentially clouded,
time series of satellite observations. We leave this explo-
ration of the required dataset and models for further work.

Data Source. Several open-access satellite products sup-
port vegetation monitoring.
• Landsat missions [91] offer a long-term multispectral

record at 30 m resolution, with a 16-day revisit cycle (re-
duced to 8 days since 2013).

• MODIS [45, 76] provides more spectral bands and a 1–2
day revisit rate, though at a coarser 250–1000 m resolu-
tion.

• Since 2015, Sentinel-2 [70] has been delivering 10 m
global imagery with a 5-day maximum revisit period,
balancing high spatial and temporal resolution. The
Sentinel-2 instrument captures spectral bands indicative
of ecological patterns, such as red-edge wavelengths sen-
sitive to vegetation stress and chlorophyll content [18].

• Radar sensors may provide diverse ecological insights de-
pending on their frequency: C-band such as Sentinel-
1 [83] detects foliage, topography, and moisture, while L-
band such as ALOS PALSAR [75] can characterize wood
structure.
In this paper, we chose Sentinel-2 due to its widespread

use for large-scale vegetation monitoring [46, 52, 80], but
we believe our conclusions remain applicable and may
be extended to other satellite products in future works.
We leave the exploration of our proposed spatiotemporal
sampling for multimodal representation learning for future
work.

Downloading. The SSL4Eco dataset is downloaded from
Google Earth Engine using code from SeCo [58] and
SSL4EO-S12 [89] with altered data source, seasonality,
and data distribution. We use the Sentinel-2A MSI col-
lection which, compared to Sentinel-2C, has atmospheric
correction and depicts more accurately features on the
ground [70]. We use harmonized version of the product in-
stead of the original one, as it corrects for normalization
issues in 2022. We use Sentinel tiles with less than 20%
cloud coverage.

A-2. Implementation Details
In this section, we provide more details on the implementa-
tion and training of our models.

Input Bands. Our models SeCo-Eco and MoCo-Eco are
trained to take as input the 8 Sentinel-2 bands for ecologi-
cal applications. Specifically, we use the B2, B3, B4, B5,
B6, B7, B8, and B8A bands. While B2-B4 provide infor-
mation on foliage color, which helps to assess seasonality



and plant health, B5-B7 capture red-edge wavelengths sen-
sitive to vegetation stress and chlorophyll content, and B8
and B8A in near-infrared range are useful to distinguish
non-vegetated areas. In addition, we also include the NDVI
index as a remote sensing-based proxy of vegetation pro-
ductivity and biomass [69]. As a result, our models expect
9 channels as input.

We leave the exploration of pretraining on our SSL4Eco
sampling with more bands or modalities for future work.

Weighted Sampling. Despite the uniform global sam-
pling of SSL4Eco, some locations may have more inter-
esting geographical and seasonal dynamics than others. In
order to drive the pretraining towards regions with richer
ecological patterns, we use a weighted sampling in our pre-
training dataloader. Specifically, we assign a ÷4 weight to
non-vegetated areas, identified as mean NDVI < 0.1 in all
seasons (17% of SSL4Eco), focusing less on deserts and ice
packs. We oversample mountain regions with a ×2 weight,
identified with the GMBA Mountain Inventory [57] (16%
of SSL4Eco), focusing more on ecologically diverse areas,
as mountain regions harbor the highest diversity and hetero-
geneity of ecoregions.

Pretraining. We pretrain SeCo-Eco using the hyperpa-
rameters and code provided by Mañas et al. [58], using
MoCo v2 [11], with minor changes: we replace the RGB
input with multispectral images and set the length of the
negative examples queue to 65 536, following the imple-
mentation of Wang et al. [89].

We pretrain MoCo-Eco using the hyperparameters and
code provided by Wang et al. [89], adapted for a single
A100 GPU with batch size of 256.

Finally, we modify the random seasonal sampling found
in the implementations of SeCo [58] and SSL4EO [89].
When randomly selecting seasons at batch construction
time, both use:
np.random.choice(..., replace=True) ,
although we believe:
np.random.choice(..., replace=False)
is the correct implementation of their respective methods,
as this avoids contrasting an image against itself.

A-3. EVI-based Seasonality
We use the Enhanced Vegetation Index (EVI) from the
MCD12Q2 v6.1 [30] product of the MODIS [45] satellite
mission to define our local, phenology-informed seasons.
Similar to NDVI, the EVI index is commonly used to quan-
tify the greenness of an area, but is more sensitive in areas
with dense vegetation cover. Figure A-1 illustrate a typi-
cal EVI curve over the year, and Table A-1 details how the
Greenup, Maturity, Senescence, and Dormancy seasonality

Figure A-1. Enhanced Vegetation Index (EVI) curve of the vege-
tation cycle at a given location. Based on this curve, the Greenup,
Maturity, Senescence, and Dormancy seasonality variables are de-
fined as detailed in Tab. A-1. Image taken from [44].

Name Definition - Date when...

Greenup EVI first crossed 15% of segment EVI amplitude
Maturity EVI first crossed 90% of segment EVI amplitude
Senescence EVI last crossed 90% of segment EVI amplitude
Dormancy EVI last crossed 15% of segment EVI amplitude

Table A-1. Definition of the Greenup, Maturity, Senescence, and
Dormancy seasonality variables based on the EVI curve (Fig. A-
1).

variables are defined. For each location in our dataset, we
choose 4 images, one for each season, close to the middle
between the four EVI-derived variables. See the MCD12Q2
user guide [44] for more details on EVI variables.

A-4. Calendar Ablation
Our temporal sampling of SSL4Eco described in Sec-
tion 3.1 makes the assumption that pretraining on EVI-
based seasonal samplings rather than calendar seasons
yields better features for ecological downstream tasks.
To verify this claim, we assemble the SSL4Eco-Calendar
dataset, which follows the same spatial sampling as
SSL4Eco, but with a temporal sampling based on calen-
dar dates following SSL4EO-S12 [89]. We derive SeCo-
Calendar from this dataset, by using the same pretraining
recipe and backbone as for our SeCo-Eco, and compare
in Table A-2 their respective performance across down-
stream tasks. We observe that our proposed EVI-based
seasonal sampling yields representations which overall per-
form better than calendar-based sampling on most down-
stream tasks. In particular, EU-Forest (+1.5 micro F1),
TSAI (+1.9 macro F1), and Biomes (+0.9 macro F1) prove



Model BE10%
(micro mAP)

↑ CLEF
(micro F1)

↑ EU-Forest
(micro F1)

↑ TSAI
(micro F1)

↑ Biomes
(macro F1)

↑ CAVM
(macro F1)

↑ BioMassters
(mean R2)

↑ Chelsa
(mean R2)

↑

SeCo-Calendar 85.3 ± 0.0 22.4 34.2± 0.1 40.8± 0.0 55.2± 1.0 58.7± 0.8 75.7 ± 0.0 80.6± 0.5

SeCo-Eco (ours) 85.3 ± 0.0 22.7 35.7 ± 0.4 42.7 ± 0.0 56.1 ± 0.7 59.4 ± 1.0 75.1± 0.0 81.1 ± 0.4

Table A-2. Linear probing comparison of SeCo-Eco and SeCo-Calendar pretrained on EVI-based and calendar-based seasonal sam-
plings, respectively. EVI-based samplings overally yields better features for downstream macroecological tasks, with the exception of the
BioMassters dataset. Best.

(a) Biomes (b) CAVM

(c) EU-Forest (d) CHELSA

Figure A-2. Spatial distribution of the four new downstream tasks created for this work. We sample Biomes and CHELSA locations
uniformly across the landmass. Meanwhile, the CAVM dataset is located in arctic regions and EU-Forest is limited to Europe.

to benefit from the finer phenology-informed features of
SeCo-Eco. These results validate the importance of tempo-
ral sampling and the definition of local seasonality to cap-
ture local ecological patterns.

A-5. Downstream Tasks

We illustrate in Figure A-2 the spatial distribution of the
samplings used for the new downstream tasks proposed in
this paper: Biomes, CAVM, EU-Forest, and CHELSA

A-6. Detailed Results
Beyond evaluating performance with the most established
metric per dataset, we provide further experimental results
on an expanded set of metrics.



Model

BE10% [82]

Macro F1 ↑ Micro F1 ↑ Macro mAP ↑ Micro mAP ↑

LP 30-NN LP 30-NN LP 30-NN LP 30-NN

SeCo [58] 56.3± 0.3 36.0± 0.1 68.9± 0.2 44.7± 0.1 64.5± 0.2 62.4± 0.2 79.2± 0.0 77.8± 0.1

SatMAE [16] 58.9± 0.7 39.0± 0.1 69.3± 0.3 47.5± 0.1 66.2± 0.3 65.1± 0.2 79.7± 0.2 79.6± 0.0

Satlas [5] 55.7± 1.2 37.3± 0.1 67.3± 0.7 45.9± 0.1 64.8± 0.2 62.2± 0.2 77.9± 0.2 77.9± 0.0

Croma [31] 59.9± 0.5 37.2± 0.1 70.7± 0.2 46.1± 0.1 67.1± 0.1 63.6± 0.3 80.7± 0.2 79.1± 0.0

SSL4EO [89] 63.1± 0.2 39.6± 0.1 72.5± 0.2 47.9± 0.1 71.1± 0.3 67.8± 0.2 83.2± 0.1 81.1± 0.0

DOFA [93] 59.9± 0.6 37.8± 0.2 70.1± 0.2 46.1± 0.1 66.9± 0.2 62.7± 0.2 80.1± 0.0 77.3± 0.1

SeCo-Eco (ours) 66.8 ± 0.3 41.4 ± 0.1 75.0 ± 0.1 49.9 ± 0.1 74.1 ± 0.2 71.7 ± 0.2 85.3 ± 0.0 84.0 ± 0.0

Table A-3. Linear probing and K-Nearest Neighbor performance across multiple metrics for the BigEarthNet-10% task. Best, second best.

Model

EU-Forest [60]

Macro AUROC ↑ Macro F1 ↑ Micro AUROC ↑ Micro F1 ↑

LP 5-NN LP 5-NN LP 5-NN LP 5-NN

SeCo [58] 82.6± 0.0 63.9± 0.3 12.3± 0.7 18.2± 0.3 90.6± 0.1 77.6± 0.2 31.3± 0.9 30.6± 0.2

SatMAE [16] 84.6± 0.2 66.7 ± 0.4 15.0 ± 0.7 21.0 ± 0.3 91.6± 0.1 79.8 ± 0.2 35.7 ± 0.9 33.3 ± 0.1

Satlas [5] 81.1± 0.3 62.7± 0.3 10.1± 0.4 17.5± 0.3 89.6± 0.1 76.7± 0.2 29.8± 1.5 30.0± 0.2

Croma [31] 82.9± 0.3 63.6± 0.3 12.2± 0.7 18.1± 0.3 90.5± 0.2 77.8± 0.2 32.3± 0.9 30.9± 0.2

SSL4EO [89] 83.9± 0.0 65.0± 0.3 11.6± 0.4 19.3± 0.3 91.2± 0.2 78.5± 0.2 32.6± 0.1 31.5± 0.2

DOFA [93] 83.1± 0.1 63.1± 0.5 13.5± 0.5 17.6± 0.5 90.7± 0.1 77.3± 0.3 34.8± 0.9 29.9± 0.3

SeCo-Eco (ours) 84.8 ± 0.2 65.6± 0.2 14.8± 0.6 19.9± 0.2 91.7 ± 0.1 79.0± 0.1 35.7 ± 0.4 32.4± 0.2

Table A-4. Linear probing and K-Nearest Neighbor performance across multiple metrics for the EUForest task. Best, second best.

Model

TreeSatAI [1]

Macro F1 ↑ Macro MAP ↑ Micro F1 ↑ Micro MAP ↑

LP 5-NN LP 5-NN LP 5-NN LP 5-NN

SeCo [58] 10.1± 0.0 24.3 24.3± 0.0 20.5 23.4± 0.0 35.2 44.6± 0.0 34.6

SatMAE [16] 21.0 ± 0.1 33.7 36.8 ± 0.1 35.8 46.8 ± 0.3 43.7 58.0 ± 0.1 52.3

Satlas [5] 17.8± 0.0 30.1 32.4± 0.0 27.9 42.9± 0.0 40.8 54.2± 0.0 45.4

Croma [31] 20.3± 0.0 30.1 34.9± 0.0 27.8 43.8± 0.0 40.7 56.6± 0.0 45.6

SSL4EO [89] 18.2± 0.0 30.2 33.1± 0.0 28.4 42.3± 0.0 40.9 54.5± 0.0 46.0

DOFA [93] 14.7± 0.0 26.2 28.7± 0.0 21.9 35.1± 0.0 37.3 50.8± 0.0 37.5

SeCo-Eco (ours) 19.2± 0.0 29.7 34.3± 0.0 29.0 42.7± 0.0 40.6 54.8± 0.0 45.7

Table A-5. Linear probing and K-Nearest Neighbor performance across multiple metrics for the TreeSatAI task. Due to the fixed splits, no
standard deviation can be reported for K-Nearest Neighbor probing. Best, second best.



Model

Biomes [65]

Macro Acc ↑ Macro AUROC ↑ Macro F1 ↑ Micro Acc ↑ Micro F1 ↑

LP 10-NN LP 10-NN LP 10-NN LP 10-NN LP 10-NN

SeCo [58] 40.0± 0.4 35.4± 0.7 91.2± 0.6 79.8± 1.0 41.6± 0.5 36.9± 1.0 62.7± 0.5 59.2± 0.5 62.7± 0.5 59.2± 0.5

SatMAE [16] 49.9± 1.0 46.1± 0.5 93.7± 0.4 88.8± 0.4 51.4± 1.1 47.8± 0.7 69.0± 0.5 66.7± 0.6 69.0± 0.5 66.7± 0.6

Satlas [5] 47.1± 1.4 45.9± 0.7 92.8± 0.5 88.4± 0.4 48.3± 1.6 47.6± 0.9 65.6± 0.8 65.1± 0.5 65.6± 0.8 65.1± 0.5

Croma [31] 46.2± 1.8 41.2± 0.5 92.2± 0.4 85.7± 0.6 47.2± 1.4 42.2± 0.6 65.7± 0.7 61.7± 0.3 65.7± 0.7 61.7± 0.3

SSL4EO [89] 51.3± 0.9 48.2± 0.5 94.3± 0.6 89.6± 0.8 53.4± 1.0 49.7± 0.5 70.4± 0.5 67.6± 0.6 70.4± 0.5 67.6± 0.6

DOFA [93] 48.1± 1.4 41.8± 0.4 92.9± 0.3 85.7± 0.6 49.7± 1.3 43.0± 0.5 66.4± 0.6 61.8± 0.5 66.4± 0.6 61.8± 0.5

SeCo-Eco (ours) 53.9 ± 0.7 49.3 ± 0.7 95.5 ± 0.4 90.0 ± 0.7 56.1 ± 0.7 51.2 ± 0.9 72.9 ± 0.5 69.4 ± 0.4 72.9 ± 0.5 69.4 ± 0.4

Table A-6. Linear probing and K-Nearest Neighbor performance across multiple metrics for the biomes classification task. Best,
second best.

Model

CAVM [73]

Macro Acc ↑ Macro AUROC ↑ Macro F1 ↑ Micro Acc ↑ Micro F1 ↑

LP 20-NN LP 20-NN LP 20-NN LP 20-NN LP 20-NN

SeCo [58] 53.2± 0.6 50.3± 0.6 87.3± 0.3 85.6± 0.3 54.5± 0.7 52.1± 0.7 61.4± 0.6 60.6± 0.5 61.4± 0.6 60.6± 0.5

SatMAE [16] 55.2± 1.6 54.0± 0.6 88.3± 0.3 87.9± 0.3 56.4± 1.5 55.8± 0.7 63.0± 0.5 63.5± 0.5 63.0± 0.5 63.5± 0.5

Satlas [5] 52.7± 2.1 51.5± 0.4 87.6± 0.3 86.6± 0.3 53.8± 2.0 53.2± 0.5 61.2± 0.5 61.2± 0.5 61.2± 0.5 61.2± 0.5

Croma [31] 52.7± 1.3 50.1± 0.7 87.4± 0.3 85.6± 0.4 53.7± 1.2 51.6± 0.8 61.0± 0.7 60.3± 0.6 61.0± 0.7 60.3± 0.6

SSL4EO [89] 56.0± 0.5 55.0± 0.6 88.9± 0.3 88.2± 0.3 57.5± 0.6 56.9± 0.7 63.7± 0.6 63.7± 0.5 63.7± 0.6 63.7± 0.5

DOFA [93] 55.3± 1.8 51.7± 0.5 88.2± 0.4 87.0± 0.3 56.5± 1.6 53.6± 0.6 62.4± 0.8 62.2± 0.4 62.4± 0.8 62.2± 0.4

SeCo-Eco (ours) 58.1 ± 1.2 58.0 ± 0.7 89.9 ± 0.3 89.2 ± 0.4 59.4 ± 1.0 59.5 ± 0.8 65.3 ± 0.5 65.6 ± 0.6 65.3 ± 0.5 65.6 ± 0.6

Table A-7. Linear probing and K-Nearest Neighbor performance across multiple metrics for the CAVM classification task. Best,
second best.

Model
BioMassters [61]

Mean R2 ↑ Mean MAE ↓ Mean RMSE ↓

LP 1-NN LP 1-NN LP 1-NN

SeCo [58] 51.3± 0.0 −19.2 3.9± 0.0 7.0 5.8± 0.0 11.0

SatMAE [16] 59.5± 0.6 −18.0 3.6± 0.0 7.0 5.3± 0.0 11.0

Satlas [5] 62.5± 0.9 −17.8 3.3± 0.1 7.0 4.9± 0.1 11.0

Croma [31] 58.5± 0.2 −18.1 3.5± 0.0 7.0 5.3± 0.0 11.0

SSL4EO [89] 71.4± 0.0 −16.8 2.8± 0.0 6.9 4.2± 0.0 10.9

DOFA [93] 63.1± 0.4 −18.3 3.2± 0.0 7.0 4.8± 0.0 11.0

SeCo-Eco (ours) 75.2 ± 0.1 -16.3 2.5 ± 0.0 6.9 3.8 ± 0.0 10.9

Table A-8. Linear probing and K-Nearest Neighbor performance across multiple metrics for the BioMassters task. Due to the fixed splits,
no standard deviation can be reported for K-Nearest Neighbor probing. Best, second best.



Model

CHELSA Climate [47] - Temperature & Precipitation

Temp MAE ↓ Temp R2 ↑ Prec MAE ↓ Prec R2 ↑

LP 10-NN LP 10-NN LP 10-NN LP 10-NN

SeCo [58] 572.3± 1.1 547.8± 1.7 63.1± 0.3 61.3± 0.3 33380.8± 291.5 30725.5± 171.8 60.3± 0.7 60.7± 0.8

SatMAE [16] 482.0± 2.3 411.4± 1.2 74.4± 0.2 76.1± 0.2 30999.5± 314.9 27087.1± 135.4 65.2± 0.4 67.1± 0.5

Satlas [5] 595.1± 3.4 474.7± 3.6 62.1± 0.4 69.4± 0.7 36698.8± 685.3 29535.8± 95.1 55.9± 1.0 62.4± 0.7

Croma [31] 511.5± 2.5 505.5± 1.6 71.1± 0.2 66.4± 0.2 32887.8± 350.8 30974.2± 96.6 61.4± 0.6 60.3± 0.4

SSL4EO [89] 496.1± 1.1 410.7± 0.8 72.4± 0.2 75.8± 0.3 30960.7± 154.7 27989.7± 148.3 65.5± 0.4 65.4± 0.4

DOFA [93] 576.0± 0.7 505.9± 0.9 63.9± 0.3 66.9± 0.3 34860.1± 297.0 30311.1± 182.9 59.7± 0.5 59.9± 0.7

SeCo-Eco (ours) 411.4 ± 0.9 364.8 ± 0.7 80.7 ± 0.2 80.5 ± 0.2 27695.5 ± 74.8 25946.7 ± 72.6 70.2 ± 0.3 69.5 ± 0.4

Table A-9. Linear probing and K-Nearest Neighbor performance overview for the CHELSA Climate task. We break down the predictions
for temperature and precipitation. Best, second best.

Model

CHELSA Climate [47] - Evapotranspiration & Site Water Balance

Evap MAE ↓ Evap R2 ↑ Swb MAE ↓ Swb R2 ↑

LP 10-NN LP 10-NN LP 10-NN LP 10-NN

SeCo [58] 2131.6± 8.7 2068.0± 9.8 68.9± 0.2 67.1± 0.1 24903.7± 137.7 23878.3± 143.0 80.9± 0.2 80.5± 0.2

SatMAE [16] 1760.4± 6.7 1564.7± 5.4 79.2± 0.2 80.0± 0.2 20999.2± 87.5 19055.6± 66.2 86.9± 0.1 87.7± 0.1

Satlas [5] 2093.3± 6.4 1761.5± 10.3 70.9± 0.2 75.3± 0.5 24115.2± 131.3 20772.5± 116.8 83.4± 0.2 85.5± 0.1

Croma [31] 1872.4± 27.2 1882.2± 5.6 76.2± 0.5 73.2± 0.2 23003.2± 270.2 21593.9± 79.0 84.6± 0.4 84.7± 0.2

SSL4EO [89] 1786.0± 3.4 1522.8± 3.0 78.6± 0.2 81.1± 0.2 20444.3± 58.1 18155.6± 42.4 87.7± 0.1 88.9± 0.1

DOFA [93] 2086.1± 3.5 1911.6± 6.2 71.2± 0.3 72.0± 0.3 23943.5± 38.3 22370.0± 60.8 83.4± 0.1 83.5± 0.2

SeCo-Eco (ours) 1537.6 ± 4.2 1391.2 ± 3.3 83.7 ± 0.1 83.9 ± 0.2 18567.4 ± 90.2 17257.4 ± 50.6 89.6 ± 0.1 89.9 ± 0.1

Table A-10. Linear probing and K-Nearest Neighbor performance overview for the CHELSA Climate task. We break down the predictions
for evapotranspiration and site water balance. Best, second best.
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